

Qualité de la rivière Schwalbach à Hottwiller

Synthèse de l'état écologique

Caractéristiques du bassin de la rivière

Communes (% du ban communal concerné par le bassin de la rivière)	Siersthal (23,2%) – Reyersviller (18,5%) – Lemberg (18,1%) – Petit-Réderching (13,1%) – Lambach (12,6%) – Enchenberg (9,2%) – Bitche (2,9%) – Hottviller (2,9%)							
Surface du bassin versant	4 463,8 Ha							
Distance à la source	6,8 km							
Principaux affluents	Steschbach (rive gauche) – Schwangerbach (rive droite) – Holwiese, Kilthal, Grossthal (rive droite)							
Zones de protection (APB – N2000 – ZNIEFF)	0 %	0 %	18.9 % (844.2 Ha)					
Géologie	e Grès Voltzia (44%) – Grès Vosgien (31 %) – Grès conglomérat (15%) – Alluvions (9%)							
Catégorie piscicole	inconnue		_					

Physico-chimie

Elle permet de qualifier et quantifier la pollution et d'en identifier les causes en mesurant divers paramètres comme la température, l'acidité (pH), l'oxygène dissous, la concentration des différentes formes d'azote et de phosphore, des polluants métalliques ainsi que de nombreux autres composés de synthèse (micropolluants) sur les sédiments.

Le Schwalbach à Hottviller

(02 10 07 20)																							
		janvier		février		mars		avril	mai		juin		juillet		août		septembre	\Box	octobre	$oldsymbol{\square}$	novembre	\Box	décembre
Bilan oxygène																							
Oxygène dissous	mg O2/L			7.5	2	9.5	1	7.4	9.1	1	11.7	1	6.7	2	7.1	2	7	2	5.6	3	8.3	1	
DBO5	mg O2/L	2	1	2.4	1	1.1	1	1.9	2.3	1	1.4	1	0.7	1	1.4	1	1	1	2	1	1.5	1	2.2
DCO	mg O2/L	9		16		6		13	9		17		32		6		10	П	9	Т	6	П	9
Carbone organique dissous (COD)	mg C/L	3.1	1	4.2	1	2.4	1	3.4	2.9	1	4.2	1	3.8	1	2.9	1	2.3	1	3	1	2.1	1	1.9
Température et Acidité																							
Température	°C	4.7	1	5.4	1	4.5	1	9	11.5	1	14.6	1	15.6	1	15.4	1	15.1	1	11.7	1	7.3	1	
pH (in situ)	unités de pH	7.57		7.5	Т	7.7		7.4	7.4		7.4		7.6		7.71	П	7.5	Т	7.6	Т	7.1	П	
Eléments azotés																				I			
Ammonium faible teneur	mg NH4/L	0.12	2	0.046	1	0.038	1	0.056	0.058	1	0.099	1	0.052	1	0.033	1	0.046	1	0.004	1	0.035	1	0.17
Nitrates	mg NO3/L	13	2	9.8	1	8.5	1	7.1	5.8	1	7.3	1	5.2	1	4.8	1	5	1	5.1	1	5.9	1	7.4
Nitrites	mg NO2/L	0.05	1	0.04	1	0.04	1	0.04	0.06	1	0.1	2	0.08	1	0.07	1	0.04	1	0.06	1	0.06	1	0.06
Azote Kjeldahl (NTK)	mg N/L	0.5		0.5		0.5		0.5	0.5		0.6		0.5		0.5		0.8	Ш	0.5		0.5		1
Eléments phosphorés																							
Phosphore (P)	mg P/L	0.099	2	0.096	2	0.019	1	0.102	0.109	2	0.132	2	0.142	2	0.144	2	0.133	2	0.131	2	0.1	2	0.186
Orthophosphates (PO4)	mg PO4/L	0.17	2	0.173	2	0.017	1	0.117	0.13	2	0.22	2	0.176	2	0.192	2	0.267	2	0.235	2	0.209	2	0.189
Salinité																							
Chlorures	mg/L	17.1		10.3		12.9		14.3	10.7		8.18		10.2		11.5		11.5	\Box	12.5	$oldsymbol{\square}$	13.8	\Box	13.5
Sulfates (SO4)	mg SO4/L	17		13.5		15.4		13.2	15		12.9		13.6		12.9		11.9		12.4		13.8		14.1
Conductivité à 25°C (in situ)	μS/cm	300		224		252		194	192		186		192		185		178		191	ᆜ	324	\Box	
Autres paramètres																							
MES	mg/L	11		20		9.4		19	19		25		110		42		29		27	ᆜ	36		24
Calcium (Ca)	mg/L	27.7		18.9		135		21.6	21.5		20.3		21.7		20.1		18.6	Ш	17.2		17.5		20.2
Magnésium (Mg)	mg/L	11		7.95		32.7		8.19	8.53		7.74		9.07		8		7.86		7.52		7.54		9.11
Potassium (K)	mg/L	3.66		3.11		1.93		2.4	2.68		3.2		2.36		2.53		2.87	\Box	3.25	⅃	2.51	\Box	3.63
Sodium (Na)	mg/L	8.8		6.64	_	7.69		5.7	6.19		5.58		6.17	┸	5.59		6.33	_	5.55	_	6.31	_	7.93
Aluminium dissous					_	19				┸	58			┸		_	13	_		┙		_	
Fer dissous			Ц		_	99					180	Ш		┸			120	_		_		_	
Sédiments																							
Somme des HAP	mg/kg MS				_									┸		Ц	0.52	_		Ц		\perp	
Aluminium	mg/kg MS													┸		Ц	1850	Ц		Ц		Ц	
Arsenic	mg/kg MS				_				1					┸			1.9			┙		_	
Fer	mg/kg MS								1	1				┸			5130			_			
Plomb	mg/kg MS								1	1				┸			11.6			_			
Zinc	mg/kg MS				_				<u> </u>	┸				┸			35			_			
Mercure	mg/kg MS				_					1				┸			0.1	_		_		_	
Cadmium	mg/kg MS																0.3	Ш				Ш	

Remarques:

Les analyses d'eau montre une bonne qualité.

Macroinvertébrés

Elle détermine un indice normalisé de qualité biologique globale (IBGN) allant de 1 à 20 et qui permet de classer les cours d'eau. Le diagnostic permet une appréciation globale de la qualité du cours d'eau et des effets de perturbation du milieu sur les organismes. Mais il ne permet pas de désigner la cause précise de dégradations observées.

CALCUL DE L'IB	GN	TEST ROBUSTESSE					
Richesse taxonomique	32	Taxon indicateur	Leptophlebidae				
Classe de variété	9	N° groupe faunistique indicateur	7				
Taxon indicateur	Goeridae	IBGN (/20)	15				
N° groupe faunistique indicateur	. /	Classe de qualité	Bonne				
IBGN (/20)	15		<u> </u>				
Classe de qualité	Bonne						

Remarques:

32 familles de macroinvertébrés sont identifiées en phase A + B ce qui correspond à une classe de variété moyenne (9) en rapport avec la capacité attendue du milieu (moyenne 10).

Le taxon indicateur de niveau 7 indique une bonne qualité de l'eau.

Macrophytes

Les macrophytes regroupent l'ensemble des plantes aquatiques visibles à l'œil nu qui se développent dans les cours d'eau.

L'indice macrophyte (IBMR) fournit des informations sur le niveau trophique, la chimie et l'hydromorphologie des rivières.

CALCUL DE L'IBI	MR	TEST ROBUSTESSE				
Richesse taxonomique	3	IBMR (/20)	8,8			
Niveau trophique	Moyen	Classe de qualité	Mauvaise			
IBMR (/20)	10,22					
Classe de qualité	Moyen					

Remarques:

Au vu de la qualité des habitats de la rivière, la qualité de l'eau est limitante.

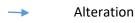
Cet indice traduit essentiellement le degré de trophie lié à des teneurs en ammonium et en orthophosphates, ainsi qu'aux pollutions organiques les plus flagrantes.

Etat écologique de la station : Moyen

Hydromorphologie

Belle diversité de faciès d'écoulements

Puissance spécifique intéressante (> 25 W.m⁻²)


Habitats moyennement biogènes

Points faibles / potentiels

La qualité de l'eau est globalement bonne.

Les pistes d'améliorations : diversification des habitats.

<u>Légende</u>

Pression

Occupation du bassin de la rivière

% Surface Foret	69%
% Surface Artificiel	6%
% Surface Agriculture Intensive	14%
% Surface Agriculture Extensive	11%